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Abstract

The Vera C. Rubin Observatory is slated to observe nearly 20 billion galaxies
during its decade-long Legacy Survey of Space and Time. The rich imaging data it
collects will be an invaluable resource for probing galaxy evolution across cosmic
time, characterizing the host galaxies of transient phenomena, and identifying
novel populations of anomalous systems. To facilitate these studies, we introduce a
convolutional variational autoencoder trained to estimate the redshift, stellar mass,
and star-formation rates of galaxies from multi-band imaging data. We train and
test our physics-informed CVAE on a spectroscopic sample of ∼26,000 galaxies
within z < 1 imaged through the Dark Energy Camera Legacy Survey. We show
that our model can infer redshift and stellar mass more accurately than the latest
image-based self-supervised learning approaches, and is >100x faster than more
computationally-intensive SED-fitting techniques. Using a small sample of Green
Pea and Red Spiral galaxies reported in the literature, we further demonstrate how
this CVAE can be used to rapidly identify rare galaxy populations and interpret
what makes them unique.

1 Introduction

At the cornerstone of a range of diverse astrophysical domains sits the chemical and dynamical
histories of galaxies. Aspects of these histories can be inferred piecewise from observations. From
broad-band photometry, one can infer the underlying spectral energy distribution (SED); using
morphological features, one can reconstruct a galaxy’s merger/interaction history. Novel galaxy
sub-populations have been discovered through detailed manual inspection along these axes; some
prominent examples include ‘Green Pea galaxies’, defined by their compact shapes and high star-
formation rates [5]; and ‘passive Red Spirals’– spiral galaxies with minimal star formation, whose
colors seem to contradict a morphology that is commonly tied to much more active galaxies [12].
Several of these sub-populations have been only identified through manual vetting by scores of human
volunteers (e.g., [15]).

The rise of deep convolutional neural networks, which allow for morphological classification of
galaxies from image data [6], and of simulation-based inference to estimate their underlying SED
parameters from photometry [18], have paved the way for low-latency galaxy analysis in the era of
synoptic surveys. However, anomaly detection within these frameworks remains an open question:
out-of-distribution events may be identified by flagging high reconstruction errors at test time [e.g.,
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17], but this approach can produce samples contaminated by non-astrophysical anomalies such as
poorly-calibrated images and chip gaps.

Here, we introduce a technique to guide the latent features of a convolutional variational auto-encoder
(CVAE) toward the physical parameters of a galaxy. CVAEs are a class of neural network designed for
compression. Variational AEs, in particular, typically employ the Kullback–Leibler (KL) divergence
to enforce a continuous and probabilistic latent distribution characterized by a multivariate standard
Normal. CVAEs have been extensively used in the literature for galaxy image reconstruction [13, 7, 3].
Here, we extend this methodology to disentangle the observational properties of a galaxy (e.g., its
orientation) from its intrinsic properties in the latent space, and discover more meaningful anomalies.

2 Data and Methodology

In this section, we describe our methodology for designing and training a physics-informed CVAE.
Our CVAE encodes a galaxy image into 5 latent dimensions, the first four corresponding to the
orientation, redshift, stellar mass, and star-formation rate of the galaxy. The fifth dimension encodes
any remaining structure not captured by the first four features.

We select a sample of z < 1 spectroscopic galaxies from both the LSST deep drilling fields catalogue
from [19] (hereafter, the Z22 sample) and from GAMA DR4 [8]. These catalogues report the average
star-formation rate and stellar mass of each galaxy obtained with the SED-fitting codes CIGALE and
PROSPECT, respectively, along with their associated uncertainties. We include the Z22 sample to
provide training support at high redshift, and the GAMA catalogue to includes low-redshift objects
for which rich morphological information is available. For galaxies that overlap with the Dark Energy
Camera Legacy Survey (DECaLS) footprint, we then download 128x128 px DECaLS co-added
images centered at the location of each galaxy in grz1. DECaLS data reaches a 5-σ depth of g ∼24,
making it a sufficient analog for upcoming Rubin data (g ∼24.52). We remove five galaxies that are
missing images in at least one filter, leaving us with a combined sample of 26,126 galaxies.

As in [2], we pre-process our images in each filter b by applying the following normalization:

xb = tanh

(
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β

xraw,b
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where β = 10 was chosen empirically to allow our image maxima to be well-distributed within [0, 1].
We then interpolate each image to 69x69 px to reduce training times.

Next, we use the photutils package to estimate the orientation of each galaxy. We stack the grz
images and subtract the median background level from the stack, assuming a 10x10 px box size and
a 3x3 px median filter. We then convolve each background-subtracted image with a 2D Gaussian
filter and construct a catalog of all identified sources. The morphological features of each source are
calculated by default, and we extract the orientation of the source whose centroid is closest to the
center of the image. We then split our data into an 80% training sample and a 20% validation sample.

To assess the utility of our CVAE for anomaly detection, we augment our validation set with a sample
of 294 Red Spiral galaxies from [12] and the KISS sample of 13 Green Pea galaxies [4]. The Red
Spiral galaxies were consolidated by the 160,000 volunteers of the Galaxy Zoo project.

We construct our CVAE using the same architecture as in [1]3. The network consists of three
convolution encoding layers, three deconvolution decoding layers, and a latent dimension of 5. We
train the network using a loss function consisting of three terms. The first is the reconstruction loss,
the second is the KL divergence between the fifth latent feature and a standard Normal, and the third
is the mean squared error between the first four latent features and the galaxy’s physical properties:
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1https://www.legacysurvey.org/decamls/
2https://www.lsst.org/scientists/keynumbers
3https://github.com/jwuphysics/galaxy-autoencoders.
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Figure 1: A comparison between the learned latent features of the CVAE applied to the validation set,
and the physical properties of the associated galaxies derived through SED fitting. 1-σ uncertainties
on SED-estimated parameters are shown in gray. Literature values for Green Pea galaxies are given
in green, and those for Red Spirals are given in red (only redshift is reported for Red Spirals).

Method Redshift R2 Stellar Mass R2

(r, g, z) Photometry + MLP [11] 0.69 0.65

Image Embedding + MLP [16] 0.39 0.45

Image Embedding + MLP [11] 0.63 0.57

Image Embedding + kNN [11] 0.71 0.66

Image Embedding (ours) 0.83 0.75
Table 1: R2 values for the linear regression models that predict a galaxy’s spectroscopically-derived
redshift and stellar mass from its corresponding CVAE latent feature.

where p is a vector containing the physical properties of the galaxy (orientation, spectroscopic
redshift, and survey-reported stellar mass and star-formation rate) and σp are their reported 1-σ
uncertainties (we assume an uncertainty of 0.1 rad for all calculated orientations). We leave the
fifth latent dimension of our CVAE free to capture the remaining morphological information in each
image. The coefficients β0 and β1 are hyperparameters; we have found through moderate tuning
that setting β0 = 10 and β1 = 50 results in reasonable parameter estimates without significantly
degrading the quality of reconstructed images.

As a baseline comparison, we train a vanilla CVAE with the same architecture but excluding the
physical term from the loss function (the KL-divergence is now calculated across all 5 latent features,
which are unphysical). We train each network for 1000 epochs using the standard Adam optimizer
[10] with a learning rate of 5× 10−6 and a batch size of 128 on two GPUs, confirming convergence
of the loss and saving the model weights at the epoch where the validation loss is minimized. Our
code and trained models can be found at the associated Github repository for this work4.

3 Results and Discussion

The catalog-level and CVAE-estimated physical properties for the validation sample are compared in
Fig. 3. The CVAE appears to successfully recover the physical parameters of galaxies in the validation
set. The predictions are unbiased, with mean absolute deviations of at most 0.1, for star-formation
rate. In addition, few catastrophic outliers are observed for most galaxy properties (the scatter is large
for star-formation rate, but comparable to the error bars on publicly reported SED estimates). An
exception is the orientation ϕ: because the parameter is periodic in nature (galaxies with orientations
π/2 and −π/2 are indistinguishable), this feature is poorly reconstructed at high inclinations.

4https://github.com/alexandergagliano/physics_CVAE
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Figure 2: Projections of the latent features drawn for the validation set, including the two populations
of anomalies. Sub-types are given in legend. Top row: Latent space for the vanilla CVAE, trained
without physics-informed loss constraints. Bottom Row: Latent space for our physics-informed
CVAE, with two-dimensional SVM decision boundaries overplotted. Green Peas are identified
by their compact morphologies, low stellar masses, and high star-formation rates; Red Spirals are
identified by their extended morphologies, higher stellar masses, and lower star-formation rates.

To quantitatively evaluate the CVAE’s performance on the validation set, we fit a linear model
between each CVAE-inferred feature and its spectroscopically-derived counterpart. We report the
R2 value of these regression models for spectroscopic redshift and stellar mass in Table 1, alongside
those reported for other image-based parameter inference methods from [11]. The values from [11]
were calculated on a sample of ∼200k z < 0.6 DECaLS galaxies, roughly an order of magnitude
greater than the sample considered in this work. Despite the smaller sample available for training, our
technique far outperforms the reported techniques (particularly those trained using self-supervised
learning) for estimating these galaxy properties, and to higher redshifts (z < 1). Our R2 value for
star-formation rate is 0.26; though unavoidable degeneracies exist at the photometric level, tighter
constraints from SED fits would likely improve the CVAE’s ability to infer this property in the future.

Surprisingly, our network is able to predict reasonable estimates for the spectroscopic redshifts and
stellar masses of the Red Spiral and Green Pea galaxies from images alone, despite their anomalous
colors. The redshifts of the Green Peas are still systematically underestimated by the model, which
skews the predicted star-formation rates downward.

We next construct a support vector machine (SVM) classifier to recover our sample of anomalous
galaxies using only encoded features. We use the implementation from scikit-learn, with a radial
basis function (RBF) kernel and scaled kernel coefficients. In each of five trials, we randomly split
the combined sample into 80% train and 20% test sets. We then balance our three classes across the
training set with SMOTE and evaluate performance on the test set. We calculate the fraction of each
class recovered by the classifier in each case, and average the model’s performance across all five
trials. We find that our CVAE recovers 94 ± 2% of Red Spiral galaxies with a 5% contamination
rate from non-anomalous galaxies, and 67 ± 0% of Green Pea galaxies with a 2% contamination
rate from non-anomalous galaxies (though we caution that each test sample only contains 2-3 Green
Peas). The same classifier trained on the latent features of the vanilla CVAE recovers 94± 2% of
Red Spiral galaxies with a 6% contamination rate and 47± 27% of Green Pea galaxies with a 4%
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Confirmed Green Pea Galaxy

Confirmed Red Spiral Galaxy
Nearest Neighbors in CVAE Latent Space

Nearest Neighbors in CVAE Latent Space

Figure 3: Latent space nearest-neighbors for the anomalies manually flagged in the Galaxy Zoo
project. Left: Images of galaxies with latent properties most similar to labeled “Green Pea” galaxies.
Right: Images of galaxies most similar to labeled “Red Spiral” galaxies. These galaxies are less blue
than the majority of other spirals in our sample, suggesting older average stellar populations.

contamination rate. We conclude that the physics-informed CVAE achieves marginally superior, and
significantly more consistent, performance over the vanilla CVAE in recovering Green Peas.

We next plot 2D projections of the latent space for the physics-informed and vanilla CVAE models
in Fig. 3. For the physics-informed plots, we include the decision boundaries from a 2d SVM with
linear kernel. Though the Red Spirals fall toward the edges of the latent parameter distributions in the
baseline, the plots lack physical intuition. The latent space of the physics-informed CVAE, however,
reveals the properties that make these sub-populations anomalous. Green Pea galaxies push toward
the highest star-formation rates, lowest stellar masses, and lowest “morphology” values of the sample
(this can be considered a proxy for compactness). Red Spirals, in contrast, are the most extended
objects in the sample and have low star-formation rates for their stellar masses, with most falling in
or below the ‘green valley’ that distinguishes active from quenched galaxies [14].

Finally, we identify galaxies in our sample most similar to the labeled Green Peas and Red Spirals. We
use the NearestNeighbor method in scikit-learn to identify ten galaxies in the non-anomalous
sample with latent features most similar to each galaxy in the anomalous sample. We present a
sample of galaxies with lowest latent-space Minkowski distance to multiple Red Spirals, and those
with lowest distance to multiple Green Peas, in Fig. 3. These galaxies are prime targets for upcoming
follow-up studies, to confirm their associations and further characterize their evolutionary histories.

The ability to rapidly infer physical parameters competitive with state-of-the-art SED models using
only three images of a galaxy is encouraging. Once trained, evaluation of our CVAE takes 7 ms
per galaxy on an Apple M2 Max chip. This is substantially less than the ∼10 hrs required for
rigorous SED fitting using modern approaches [9], and > 100x faster than existing simulation-based
inference (SBI) models optimized for this task [18]. With our approach, estimating the redshift,
stellar mass, and star-formation rate of all 20B galaxies observed by the Vera C. Rubin Observatory
would require only ∼1500 CPU-hours (albeit without the added benefit of full posterior distributions,
as are provided by SBI). New, neural network-based inference approaches like the one presented here
will help bring scalability and interpretability to petabyte-scale data exploration among astronomical
surveys, and facilitate the search for new galaxy sub-types.
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The Legacy Surveys consist of three individual and complementary projects: the Dark Energy
Camera Legacy Survey (DECaLS; Proposal ID 2014B-0404; PIs: David Schlegel and Arjun Dey),
the Beijing-Arizona Sky Survey (BASS; NOAO Prop. ID 2015A-0801; PIs: Zhou Xu and Xiaohui
Fan), and the Mayall z-band Legacy Survey (MzLS; Prop. ID 2016A-0453; PI: Arjun Dey). DECaLS,
BASS and MzLS together include data obtained, respectively, at the Blanco telescope, Cerro Tololo
Inter-American Observatory, NSF’s NOIRLab; the Bok telescope, Steward Observatory, University
of Arizona; and the Mayall telescope, Kitt Peak National Observatory, NOIRLab. Pipeline processing
and analyses of the data were supported by NOIRLab and the Lawrence Berkeley National Laboratory
(LBNL). The Legacy Surveys project is honored to be permitted to conduct astronomical research on
Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham Nation.

NOIRLab is operated by the Association of Universities for Research in Astronomy (AURA) under a
cooperative agreement with the National Science Foundation. LBNL is managed by the Regents of
the University of California under contract to the U.S. Department of Energy.

This project used data obtained with the Dark Energy Camera (DECam), which was constructed by
the Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by
the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and
Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher
Education Funding Council for England, the National Center for Supercomputing Applications at
the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the
University of Chicago, Center for Cosmology and Astro-Particle Physics at the Ohio State University,
the Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University, Financiadora
de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo, Financiadora de Estudos e Projetos,
Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional
de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao,
the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne National Laboratory, the University of California at
Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales
y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil
Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich,
Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut
de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, Lawrence Berkeley
National Laboratory, the Ludwig Maximilians Universitat Munchen and the associated Excellence
Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, the
Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National
Accelerator Laboratory, Stanford University, the University of Sussex, and Texas AM University.

BASS is a key project of the Telescope Access Program (TAP), which has been funded by the
National Astronomical Observatories of China, the Chinese Academy of Sciences (the Strategic
Priority Research Program “The Emergence of Cosmological Structures” Grant XDB09000000), and
the Special Fund for Astronomy from the Ministry of Finance. The BASS is also supported by the
External Cooperation Program of Chinese Academy of Sciences (Grant 114A11KYSB20160057),
and Chinese National Natural Science Foundation (Grant 12120101003, 11433005).

The Legacy Survey team makes use of data products from the Near-Earth Object Wide-field Infrared
Survey Explorer (NEOWISE), which is a project of the Jet Propulsion Laboratory/California Institute
of Technology. NEOWISE is funded by the National Aeronautics and Space Administration.

The Legacy Surveys imaging of the DESI footprint is supported by the Director, Office of Science,
Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-
05CH1123, by the National Energy Research Scientific Computing Center, a DOE Office of Science
User Facility under the same contract; and by the U.S. National Science Foundation, Division of
Astronomical Sciences under Contract No. AST-0950945 to NOAO.

GAMA is a joint European-Australasian project based around a spectroscopic campaign using the
Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan
Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the
GAMA regions is being obtained by a number of independent survey programmes including GALEX
MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV
to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the
participating institutions. The GAMA website is http://www.gama-survey.org/.
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